Am2900 FAMILY : PAGE 1
Application Note
2-24-82

Toward Structured Microprogramming with AMDASM:
The Am2901C and the Am2910A

by
Donnamaie E. White

"

AMDASM

AMDASM is the macroassembler (intended for microcode appli-
cations) which is available on the AméYSZ9/10 development
system. It is part of a comprehensive package of software
provided for bipolar support, including AMMAP, AMPROM, AMSCRM
and DDT29.

AMDASM requires that the user define the 'symbols, or
mnemonics, which will appear in the microinstructions of a
given source program (the .SRC file). The definitions are
primarily grouped in a separate file, called the definition
file (the .DEF file). In addition to the mnemonic
descriptions, some means of describing the microinstruction
format is required.

ADVANCED MICRO DEVICES o\

Am2900 FAMILY PAGE 2
Application Note
2-24-82

X

Mnemonics are described via equate statements (EQUs) and
format is descibed via substitution (SUB) and definition (DEF)
statements. EQU, SUB and DEF statements appear in the
definition file. Equates and "free format" (FF)
microinstructions appear in the source file, along with the

DEF-statement references.

The step-by-step creation of a definition file is shown on the
following pages.

The Am2901

The first Advanced Micro Devices high speed, bipolar,
bit-slice RALU (registered ALU) was the Am2901 (see figure 1).
The Am2901 is a 4-bit wide slice that includes a set of 16 RAM
registers plus a 17th register, called the Q register, for
double precision operations. The ALU is capable of
binary-two's complement operations. |
‘The Am2901 functions are a subset of those available on the
more powerful Am2903 and Am29203 RALUs. Because the Am2901‘i§
a simpler device, it is relatively easy té write microcode
with its instruction set. Coupled with the Am2910
microprogram controller, the Am2901 will be used as the
demonstration vehicle for a discussion of AMDASM.

ADVANCED MICRO DEVICES o1

?

Am2901

MICROPROCESSOR SLICE BLOCK DIAGRAM

L

L

)

8| 7]6]s|af3]2]1]0
DESTINATION ALU AL
CONTROL | FUNCTION SOURCE

MICROINSTRUCTION DECODE

g

~——-| RAM, RAM SHIFT RAM, |~e—e ‘\r——
ctocx Q-SHIFT
N
‘8° DATA IN
‘A (READ) —[, %
A ~
ADORESS H ADDRESS cP
RAM F Q
5 16 ADDRESSABLE REGISTERS Q REGISTER
(READ/WRITE) ‘B’ ADDRESS
ADDRESS —7 ‘A 8 I P a
DATA DATA
ouT ouT
T
LOGIC
DIRECT J\l Y
DATA IN U
D A B g Q -
ALU DATA SOURCE
SELECTOR
R S
R S —= G
CARRY IN Cin b
8-FUNCTION ALU Cnra
——e F, (SIGN)
OVERFLOW
F l——e= F = 0000
U
OUTPUT A F
ENABLE —] OUTPUT DATyA SELECTOR

U DATA QUT

ADVANCED MICRO DEVICES ¢\

Am2900 FAMILY PAGE 3
Application Note
2-24-82

The Am2901 Registers

The Am2901 "scratchpad" registers are a dual-port memory
block, i.e., the 16 registers may be addressed two at a time.
The outputs, RAMA and RAMB, input directly into input
multiplexers (the ALU Data Source Selector of figure 1), which
in turn input into the ALU. The registers are addressed via
two sets of four address lines, one set per port. The B port
address is the source-destination (read-write) address while
the A address is a source-only address.

The address lines are labeled Ai and Bi in the figure below.
To allow the microinstruction to specify the register
addresses, two fields of four bits each are required, labeled
RA ADDR and RB ADDR. Each bit represents one of the address

lines.
DETAILED Am2901C MICROPROCESSOR BLOCK DIAGRAM
A, — A
[1
L1 11
A [~6’;,L/0"2F)’;'—<-.][¢'/‘ Q [« o T T] ?3
‘ m«‘::,:‘.‘/::'.‘ aifod = _—a—_ﬁ_'r‘;ﬂ}:{ VH X |={--L'l
’
@ Rog- 1 8
2, x
. F—Source
:_;AASCT"’M
Fune ! 7
P eco] A Lt = Sva
,‘ T T T T ~ Cout J
" e :
a1 1

Note: LSB is numbered “0": MSB 1s numbered “3".
MPR-005

ADVANCED MICRO DEVICES o\

Am2900 FAMILY PAGE 4
Application Note
2-24-82

Source Operand Selection

The other inputs to the multiplexers at the ALU input are:
outside data (D), the Q register, and logical zero (Z) (see
figure 2). The multiplexers are controlled via the Am2901
instruction lines 2,1,0. These lines allow the user to select
one of 8 possible source-operand pairs: AQ, AB, ZQ, ZB, ZA,
DA, DQ, and DZ. The mnemonics (A, B, Q, D, Z) are specified in
the Am2901 data sheet, along with the required microcode

pattern.

To program an Am290l-based CPU, the microword must contain a
field which supplies values (1 or 0 or even X) to the
instruction lines in order to select an appropriate source

operand pair. To specify A and B for example:

""""""""""" ALU SOURCE
MICRO CODE
AB: ooo0 |0]0]l1] o 0o OPERANDS
_____________________ Mnemonic [12 | 1y | 1o | Ot | R s
3 2 l AQ L L L [} A Q
. AB Ll L|H 1 A 8
To select DQ: -~ o R S
z8 L H|H| 3) 8
______________________ 2A HlL|L| o A
DA H L H 5 b] A
DQ: o o o |1]1|0] o o o pa HlH| L] & o Q
______________________ 0z H H H 7 D [e]
321 ALU Source Operand Control.

w—

ADVANCED MICRO DEVICES O

D ————

Am2900 FAMILY MICRO CODE ALU PAGE 5
Application Note Mnemonic | T+ | Octal | Function | > o0
S| '4| 3| Code

2-24-82
ADD LiLjtL 0 R Plus § R+S
SUBR L{L|H 1 S Minus R S-R
suBss LIH|L 2 R Minus S R-S§
OR LI|H|H 3 RORS RVS
AND HlL]|¢L 4 RAND S RAS
NOTRS H|{L|H 5 RANDS RAs
EXOR H|IH]|L 6 REX-ORS R¥S
EXNOR |H|H|H 7 REX-NORS | RS

Function Selection)
ALU Function Control.

The operations that can be performed on the source operand
pair are also specified on the Am2901 data sheet, along with
their microcode bit pattern. ADD is specified by "000" and
EXOR is specified by "110".

The bit pattern for function selection refers to instruction
lines 5, 4, 3. Another field in the microword is required to

supply control to these lines.

Destination Selection

The possible destinations of the result are summarized in a
third table on the data sheet. The destination is selected
via instruction lines 8, 7, 6, and these lines require another

field.
MICRO CODE FUNCTION FUNCTION v SHIFTER SHIFTER

Mnemonic | 1g | 17 |l | OS2 | shitt | Load | shift | Load | OUTPUT | pamo | RAM; | o | Qg
QREG L L L 0 X NONE NONE F->Q F X X X X
NOP L L H 1 X NONE X NONE F X X X X
RAMA L H L 2 NONE F->8 X NONE A X X X X
RAMF L H H 3 NONE F—+8 X NONE F X X X X
RAMQD H L L 4 DOWN | Fi2-+8 | DOWN | Q2~Q F Fo INg Qo IN3
RAMD H L H 5 DOWN F2—+8 X NONE F Fo IN3 Qo X
RAMQU | H [H | L 6 uP k-8 upP 20—+ Q F INg Fa INg Q3
RAMU H H H 7 upP 2F+8 X NONE F INg Fy X Q3

X = Don't care. Eiectrically, the shift pin is a TTL input i y d to a th tate output which is in the high-impedance state

8 = Register Addressed by B inputs.

UP is toward MSB, DOWN is toward LSB. ALU Destination Control.

ADVANCED MICRO DEVICES o\

Am2900 FAMILY PAGE 6
Application Note
2-24-82

PR e o

The Microword

Each of these ALU related fields must be present in the same
microword and the three fields operate in parallel. The
Am2901 portion of the microword consists of:

A L U ADDRESSES
source function destination RA ADDR RB ADDR
I35 Iglyls Igls1g AjRyA1Rg B3ByBiB,

To these five fields add a carry-in select field, typically of
one or two bits, and an ABMUX selection field, usually two
bits to allow flexible source selection. The latter field is
required because, in most general-purpose CPUs, the A and B
register addresses can be supplied by either the microword
(microinstrucion), by the machine-level command
(macroinstrucion), or some combination of both. The format
now becomes:

field: source funct dest carry RA RB ABMUX
A L U in addr addr SEL
size: 3 3 3 2 4 4 2 = 21 bits

Depending upon the hardware requirements, an output enable
field (OEYen) may be required (between dest and carry).

ADVANCED MICRO DEVICES {1

Am2900 FAMILY PAGE 7
Application Note
2-24-82

R

Describing the Microword to AMDASM

The Am2901 portion of the microword developed so far can be
described to AMDASM via detailed field descriptions in either:
one or more "SUB" (substitute) statements, one or more "DEF"
(definition) statements, or by some combination of these
techniques. The choice is a matter of personal preference and
code readability, with the emphasis on the latter.

SUB Statement

An AMDASM SUB statement is a substitution statement in that it
may appear in more than one DEF statement in place of the more
tediously defined individual fields. It is most useful when
many different DEF statements are being defined and parts of
them are identical. It can also be used to make DEF
statements themselves more readable.

SUB statements are constructed of constant and variable field
definitions (described later) whose total bit width is less
than a complete microword. SUB statements may also reference

symbolic constants.

’
;Q*i*i**ii*ii"**ii’t#tii*iﬁiﬁ

; EXAMPLE SUB STATEMENTS

;t'i'i’*’Q**fii*i*f**tt"*#*"

ALU2: SUB 3vQ#0, 3VQ#O0, 3VQ#l, 1VB#O, 2VB#0O

; defaults AQ ADD NOP OEYEN NOC
REGS: SUB 4VH#0, 4VH$0, 2VB#0O
; defaults RO RO PIPE

ADVANCED MICRO DEVICES 21

Am2900 FAMILY PAGE 8
Application Note
2-24-82

DEF Statement

An AMDASM DEF statement is constructed of constant and
variable field definitions whose total bit width is equal to
the width of the microword. One or more DEF statements may
appear in a .DEF file. They may define part of or all of a
microword. Those that define part of a microword use "don't
cares" as filler and are overlayed with other DEF statements
in the source file to complete the microword definition. Some
DEF statements may be specialized (limited variable
substitution) to simplify code creation and to help make the
source file more readable. A DEF statement may reference SUB

statements and symbolic constants.

;**§*t¢*tt*'q**'ttt***t**
; EXAMPLE DEF STATEMENTS

H I'TTETEITREZR L2222 R 22 2 J

;

COMP: DEF 19X, ALU, REGS, 24X

CONTIN: DEF CONT, 60X
GOsSuB: DEF CJS, PASS, S7X
JMPMAP: DEF JMAP, 60X

ADD.REG: DEF 19X, AB, ADD, RAMF, NOC, 4VH#0, 4VH#0, 2VB#00, 24X

; RO RO PIPE

SEQ: DEF 4VH#E, 3VQ#0, 12VSX, 45X

NEXT: DEF CJP, PASS, 12vsX, 45X

6ATAPASS:DEF 19X, zZA, OR, NOP, NOC, 4X, 4X, INSTR, 24X
I0: DEF 19X, 3vX, OR, RAMF, NOC, 4VX, 4VX, 2VB#00, 24X
REGF: DEF 19X, AB, 3VX, RAMF, NOC, 4VX, 4VX, INSTR, 24X
REGCF: DEF 19X, AB, 3VX, RAMF, CIN, 4VX, 4VX, INSTR, 24X
REGA: DEF 19X, ZB, 3VX, RAMA, 2VB#00, 4VX, 4VX, 2VB#00, 24X
NOOP: DEF 19X, zZAa, OR, NOP, NOC, 34X

ZEROPC: DEF 19X, AB, EXOR, RAMF, NOC, R1lS5, R15, PIPE, 24X

'

ADVANCED MICRO DEVICES O\

Am2900 FAMILY PAGE 9
Application Note
2-24-82

Field Definition

The individual fields referenced earlier are defined by
specifying whether or not they are constant or variable.
Variable fields may have different values in different
instructions (supplied in the source file statement). They
are usually defined with a default value, the state the
controlled lines will be left in should the microprogrammer
not specify one. Default values should be selected with care
to be obvious, to be the state most commonly used, or to be
(at least) not harmful.

As an example, for the ALU SUB statement shown below, 3VQ#0
means a 3-bit variable field (V) with a default value of
"000". If that field is the one controlling the source-select
field, the default is "AQ". The same notation for the
function select field would result in a default of "ADD" while
in the destination field it would represent "QREG". 1In the
statement shown below, note the comment lines which document
the default values by mnemonics.

;\LU: SuB 3vQs0, 3vQ#0, 3VQ#l, 2VB#00O
; defaults AQ ADD NOP NOC

ADVANCED MICRO DEVICES O\

Am2900 FAMILY : PAGE 10
Application Note

2-24-82
[FEE—————

Symbol Table Creation

The source program is the microprogram itself. The objectives
of the .DEF program is to provide the means to write the
microprogram in a straight-forward and readable manner. The
microprogram could be written in 1s and 0s, but as the program
grows in size, the practicality of that approach would rapidly
diminish. It is more desirable to create microcode using
meaningful mnemonics in a format that is similiar to ordinary

assembly-level programming.

Mnemonic Definition

To program in mnemonics, a symbol table must be created which
pairs each mnemonic with a bit pattern. AMDASM handles the
symbol table function by providing EQU (equate) statements in
both the .DEF and .SRC files. The majority of the EQU
statements will appear in the .DEF file.

Labels and Map Entry Points

The remaining symbols, consisting primarily of label identi-
fication, appear in the .SRC file and are created by the
assembler itself. The labels are paired with the PC value
(address) at which they occur. A label is a name followed by
":" or "::", The cases where "::" appears are considered
entry points and are also placed in a special file for use in

creating the memory map.

ADVANCED MICRO DEVICES o\

AMDOS/29 AMDASM MICRO ASSEMBLER, V1.4
SAMPLE AM2910 AND AM2901 MICROCODE

0019
001A
001B
001C

SYMBOLS
AB 0001
ADCREG 002Dwg—
ADCRR 001D
ADD 0000
ADDREG 002C
ADDRR 00lcC
AIR 0002
AND 0004
AQ 0000 R12 000C
BIR 0001 R13 000D
CCDIS 0001 R14 000E
CCEN 0000 R15 000F
CIN 0001 R2 0002
R3 0003
R4 0004
R5 0005
—PR6 0006
R6: EQU HE6 R7 0007
R7: EQU H$ 7 R8 0008
R8: EQU H#8 R9 0009
R9: EQU H#9 RAMA 0002
R10: EQU HA RAMD 0005
R11: EQU HEB RAMF 0003
R12: EQU H#C RAMQD 0004
R13: EQU HED RAMQU 0006
R14: EQU HEE RAMU 0007
R15: EQU H4F RDMEM 0027

0015 ZEROPC:
0016 LDMAR:
0017 READMEM:
0018 DECODE:

’

READMEM 0017
REGADD 0000

RFCT 0008
RLD 0000
RPCT 0009
STATUS 0000
SUBR 0001
SUBS 0002

001D
001lE
001F

INA::
INR::
LDA::
ADDRR: :
ADCRR::
ORR::
XORR: :

ADVANCED MICRO DEVICES o\

AMDOS/29 AMDASM MICRO ASSEMBLER, V1.4
SAMPLE AM2910 AND AM2901 MICROCODE

ENTRY POINTS

ADCREG 002D

ADCRR 001D
ADDREG 002C
ADDRR 001lcC

DATAINA 0029
DATAINR 002A
GOTOR 0022
GOTOREG 0032
IFREGZ 0030

IFRZ 0020
INA ‘ 0019
INAND 000B
INOR 0008
INR oola
LDA 001B

LDZERO 0003
"LOADA 002B <—

ORR 001E - ——— 002B LOADA::
ORREG ‘002E : - 002C ADDREG::
OUTA 0033 002D ADCREG: :
"OUTACC 0023 : 002E ORREG::
OUTR 0024 002F XORREG: :

OUTREG 0034
REGADD 0000
SWAP 0012
XORR 001F
XORREG 002F

ADVANCED MICRO DEVICES o\

Am2900 FAMILY PAGE 11
Application Note
2-24-82

Am2901 Equates

EQU statements are used for the mnemonic-bit pattern
definitions for the Am2901. The instruction tables from the
data sheet and the corresponding equates are shown on the
following page.

Three items need emphasis. First, all equates for a given
field should be grouped together. Second, they should appear
before any SUB or DEF statement which uses that field. Third,
comments should be heavily used, along with meaningful
mnemonics, to document the field functions.

Indexing the EQUsS

Note the "[11", "[2]", "[3]", etc. which appears beside each
equate group as well as beneath the SUB statement definition
as a comment. These indexes are included as a prompt to the

human reader to tie a particular set of equates to a

particular field. The equated mnemonics are those that may be
used in a variable field substitution in the source (.SRC)
file.

ADVANCED MICRO DEVICES o\

ALU SOURCE
MICRO CODE MICRO CODE
) OPERANDS oo i ALV SYMBOL
Octs .] unction
Mnemonic | Iz | Iy | lo | ¢ odo‘ R S Mnemonic | Is | 14 | 13 | code
AQ T R S 0 A Q ADD Lt 0 RPlus S R+S
AB L|L|H 1 A 8 SUBR LlL|H 1 S Minus R S-R
za L | H| L 2 0 Q suBs LiH|L 2 R Minus S R-§S
z8 L|H|H 3 o] 8 OR L|H|H 3 RORS RV S
ZA H| L |t 4 o A AND H{L]L 4 RAND S RAS
DA H|L|H 5 D A NOTRS H{L|H 5 RAND S RAsS
oa H| H|L 6 3} Q EXOR H{H|L 6 REX-ORS R¥S
bz H|H|H 7 2] 0 EXNOR H|H|H 7 REX-NORS [RS
Figure 2. ALU Source Operand Control. Figure 3. ALU Function Control.
RAM Q-REG. RAM Q
MICRO CODE FUNCTION FUNCTION v SHIFTER SHIFTER

Mnemonic |15 | 7 | lg | 9% | shit | Load | shitt | Load | OUTPUT | mamy | RAMy | Qo | Qg
QREG [I R 0 X NONE | NONE | F=Q F X X X X
NOP [1 X NONE X NONE F X X X X
RAMA L{H L 2 NONE | F->8 X NONE A X X X
RAMF L|H|H 3 NONE | F>8 X NONE F X X X
RAMQD |H | L | L a4 DOWN |F2-+8 | DOWN | Q2-Q F Fo INg Qo INg
RAMD H|L|H 5 DOWN | F2-+8 X NONE F Fo INg Qo X
RAMQU |H | H | L 6 up F-8 uP 20-Q F INg Fa INg Q;
RAMU H|H|H 7 upP k-8 X NONE F INg Fa X Q,

X = Don't care. Electricaily, the shift pin is a TTL inputi
B = Register Addressed by B inputs.
UP is toward MSB, DOWN is toward LSB.

to ath tate output which is in the high-impedance state

Y

Figure 4. ALU Destination Control.

O 37 3P ~e ~e ve o~ ne

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

Q#0
Q#1
Q#2
Q#3
Q#4
Q#5
Q#6
Q#7

Se Se Ne Ne we ~o wa Se

RAMA AND Q REGISTER
RAMA AND RAMB

Q ONLY

RAMB ONLY

RAMA

ONLY

DATA AND RAMA

DATA
DATA

AND Q
ONLY (DA PORT)

XXX ZEXXTIIEE SRS AR R 2R 2R 2R 2R 2R 222 a2 il 222222222zt i d sl

Am2901 SOURCE OPERANDS

ti***ii*tit*ii*t*******t***'***ii****i’**tit*******i'ti*****

(1]

XL 2222222 X222 22 22222222 2222222222222 2Z2R2ZXZZR]

; Am2901 ALU FUNCTIONS

;ttt*i'*ttttiii****tﬁ’**f*i*'ﬁ***'**i**ﬁ*#**’ﬂt*t&tQ**i****t

ADD:
SUBR:
SUBS:
OR:
AND:
NOTRS:
EXOR:
EXNOR:

o ~e we o~

QREG:
NOP:

RAMA:
RAMF:
RAMQD:
RAMD:
RAMQU:
RAMU :

.
’

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

Q#0
Q#1l
Q#2
Q#3
Q#4
Q#5
Q#6
Q#7

Q#0
Q#1
Q#2
Q#3
Q#4
Q#5
Q#6
Q#7

.
’
.
’
.
'
.
’
.
’
.
’
.
'
.
’

Se Ne e Se e we ~e Se

R + S

S - R

R - S

R OR S (R+S)
R AND S (RS)
NOT R AND S (TR) (S
R EXOR S (RvS)
R EXNOR S ~ (RvS)

F ->
F ->
F =>
F ->

Q only
Y only

; RAMA -> Y
B; F -> Y

F/2 => B; Q/2 -> Q;
F/2 => B; F => Y;
2F -> B; 20 -> Q; F
2F -> B; F -> Y;

(2]

)

= RS + ("R) ("S).

= ("R)S + R(7S)

tA A AR AR AR RRRRRR 22222222222 2 22 22 2Rt 2 R R R 2 R R R 2 2]

Am2901 DESTINATION CONTROL

t2 2222222222222 222222 222 22222 222 X222 22222222 222222222 2l2adR)

(3]

[PC OUT;

PC + 1 => PC]

WRITE TO RAM
F -> Y; DOUBLE DOWN SHIFT
SINGLE DOWN SHIFT

-> Y

DOUBLE UP SHIFT

SINGLE UP SHIFT

Am2900 FAMILY PAGE 12
Application Note
2-24-82

Carry-in

Another field that appears with most ALUs is the carry-in
field. This field will be 1, 2 or more bits wide, as

)

required. The following set of equates assumes a more typical
2-bit field.

o
’
o
7

;ttt'**ﬁi**i**********i**ft*i******'*ii*'**ﬁi****t*t*t******

. ; CARRY-IN [4]

;ﬁiti***’ﬁ**i*t*ﬁﬁ**’**Q*****i***iii*****ii’ii***i*******'**

NoC: EQU 8400

; Cin = LOW
CIN: EQU B#01 ; Cin = HIGH)
IC: EQU B#10 ; Cin = Cout of MSS ¢
1Z: EQU B#ll ; Cin = Zero detect

’

’

OQutput Enable Control

The last field that might be required for the Am2901 is the
output enable. It may or may not be necessary in a particular
CPU. Typical equates are shown below.

Y L 222222222 XXX R X222 R A2 R 2 2 A R R 22 il Attt l)

OEy (51

YT Y I 222222 X222 2SR 2R X222 R R 2 2 R R R R Rt bl

~ =

~e S

OEYEN: EQU B#0 ; OUTPUT ENABLE
QEYDIS: EQU B4l

’

ADVANCED MICRO DEVICES o\

Am2900 FAMILY PAGE 13
Application Note
2-24-82

RALU SUB Statements

The SUB statements can follow immediately after the EQU
statements or may be grouped at the end of the .DEF file. The
following SUB statements are for the Am2901 RALU.

The first one, "ALU", shows the three instruction fields:
source, function, and destination. It also shows a typical
carry field. The second one, "ALU2", shows the same fields as
above but adds a field for the output enable.

These two SUB statements would probably never be used in the
same source file since they represent different hardware
control patterns. The concept of one master definition file
serving more than one source file is realistic, however, and

often results in less overall documentation volume.

;ti*****t*!*it*"*i**ﬁ’ﬁ**i!*t
’

. EXAMPLE SUB STATEMENTS

CRRRRRBARRRRRRRR AR R R ARNARR
’

.;LU: SuB 3VQ#0, 3VQ#0, 3‘18;1, Z‘J‘BO::OO
. N .
: defaulrs ??] ?:2)? (3] (4] <-- EQUATE GROUP REFERENCE
}'\LU2: SuB 3vQ#0 3vQ#o, 3vQ#l, 1VB#O, 2VB40O
; defaults AQ ' ADD NOP QEYEN NOC
(1] (2] (3] (51 (4]

.
’

i

ADVANCED MICRO DEVICES 1

Am2900 FAMILY PAGE 14
Application Note
2-24-82

Registers

Addressing the registers of the RALU, discussed earlier, also
requires EQU statements, one equate per register name. Since
the A and B address fields address the same set of registers,
only one set of register EQUs is necessary. Mnemonics may be

used to supply values to more than one field.

ABMUX

Since most ALUs allow the macroinstruction to specify the
registers in addition to allowing the microinstruction to
address the registers, multiplexers are required for each
address field. A separate field is required for the select
lines to these multiplexers, named ABMUX SEL.

Register SUB Statements

SUB statements can also be defined for the register portion of
the microword. The statement shown, "REGS", provides two
address fields and the ABMUX field. Optionally, the register.
fields could have been included in the ALU or CCU SUB
statements.

ADVANCED MICRO DEVICES TV

;t*t***ﬁ****t*#ti****ftt**’****'i*********tt**i'***'i*t*t*it
; REGISTERS (RAM A PORT ADDRESS; RAM B PORT ADDRESS) (R]

ZIZIIIIEIILEZSSEZ 222222222222 iR Xl 2t R]
’

RO: EQU H#0 ; REGISTER RO *
Rl: EQU H#1l H R1
R2: EQU H$2

R3: EQU - H#3

R4: EQU H#4

RS: EQU H%#S

R6: EQU H#6

R7: EQU H$7

R8: EQU H#8

R9: EQU H#9

R10: EQU H#A

R1l: EQU HEB

R12: EQU H#C

R13: EQU H#D

R14: EQU H4E .

R15: EQU HAF : REGISTER R1S

.
’

IR ZZ2Z22222 2222 X223 22222222222 RZ2 2 22 222 22222 2i2RARRRRRRRtsRd)

; AB MUX SELECT (REGISTER ADDRESS SOURCE) [6]

;*****ti**t*t*ﬁ*iii***'**Q*Qt*i***ﬁﬁ**it*ﬁiit*ti*f**ﬁ*fﬁt*i*

PIPE: EQU B#00 ; A, B FROM MICROWORD PIPELINE REGISTER
AIR: EQU B$#10 ; B FROM PIPELINE; A FROM INSTR REG
BIR: EQU B#01 ; A FROM PIPELINE; B FROM INSTR REG
INSTR: EQU B#1l ; A, B FROM INSTRUCTION REGISTER

; These are just ideas - other choices possible
;

;Qfﬁ**’*'***ﬁ****ft*'i*'**#*i**ti

; EXAMPLE SUB STATEMENT

;**'i***’i*i****ﬁﬁ****t*i**i*'*f*

REGS: SUB 4VHR#O, 4VHEO, 2VBHOO
; defaults RO RO PIPE
; [R] [R] (6]

’

ADVANCED MICRO DEVICES o\

